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Abstract

In this paper, based on the equation of wave motion in Mindlin’s plate of magneto-elastic interaction, the problem of

scattering of flexural waves and dynamic stress concentrations in Mindlin’s plates of ferromagnetic material with a cutout

is analyzed using the wave function expansion method. And an analytical solution and numerical examples of the problems

are given. It can be seen from the results that the magnetic induction intensity has great influences on the dynamic bending

moment concentration factors.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of elastic waveguide and dynamic stress concentration in plates with a cutout is the important
subject in the research of solid structure dynamics. The cutout in structures directly influences the carrying
capacity and the life-span of structures. Therefore, many researchers have devoted to the theoretical and
experimental researches on this problem [1–10].

As analyzing and computing dynamic stress concentration factors or dynamic stress intensity factors, the
theory of classical thin plate has been restricted in theory. Mindlin’s thick plate theory is made up for the
shortage of classical thin plate theory by considering the influences of plate’s moment of inertia and shearing
strain on the problem. The satisfactory results have been gained in engineering analysis and calculation [4].
With the wave function expansion method, Pao and Mao [5] first studied the problem of the flexural wave
scattering and dynamic stress concentrations in Mindlin’s thick plates with cutouts and gave an analytical
solution and numerical examples.

With the developments of modern engineering, the ferromagnetic material has been considered for
structural applications in superconduct nuclear power station and magnetically levitated trains. It has better
physical and mechanical prosperities. The margin stress of crack or cavity in ferromagnetic material structures
may be increased in a uniform magnetic field. It has influences on the carrying capacity and the life-span of
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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structures. According to the corresponding documents, the dynamic behaviors of ferromagnetic-elastic
structures can be significantly affected by the presence of a uniform magnetic field [7].

In this paper, based on the equation of wave motion in Mindlin’s plate of magneto-elastic interaction, the
problem of scattering of flexural waves and dynamic stress concentration in a plate of ferromagnetic material
with a cutout is analyzed with wave function expansion method.

2. The equation of wave motion in Mindlin’s plate of soft ferromagnetic materials

Suppose that the thickness of the soft ferromagnetic–elastic plate is 2h. The Cartesian coordinates x–y are in
the middle plane of the plate. The z direction is along the thickness direction. The plate is placed in a static
uniform magnetic field of vertical incidence, of which magnetic induction density is B0.

The whole physical quantity of magnetic field is assumed to be divided into two parts. One is the basic
physical quantity condition, which is state of rigidity. The other is the slightly disturbed physical quantity
condition. Then, the total magnetic field may be described as

B ¼ B0 þ b, (1a)

M ¼M0 þm, (1b)

H ¼ H0 þ d, (1c)

where B, M and H are magnetic induction intensity, intensity of magnetization and intensity of magnetic,
respectively, subscript 0 physical quantity in the permanent magnetic field, and the minuscule slightly
disturbed quantities. The physical quantities of the magnetic field under rigidity condition are given below:

For |z|4h

Be
0z ¼ B0, (2a)

He
0z ¼

B0

m0

� �
, (2b)

Me
0z ¼ 0. (2c)

For |z|ph

B0z ¼ B0, (2d)

H0z ¼
B0

m0mr

, (2e)

M0z ¼
wB0

m0mr

, (2f)

where B0z, H0z and M0z are the partial quantities of B0, H0, M0 along the z-axis, respectively, superscript e

denotes the value in outer plate, m0 ¼ 4p� 10�7N/A2 the permeability of vacuum and mr ¼ 1+w the relative
magnetic permeability.

For convenience, the magnetic field in plate is written as

r � B ¼ r � ðm0mrdÞ ¼
qBx

qx
þ

qBy

qy
þ

qBz

qz
¼ 0, (3a)

r � d ¼
qhz

qy
�

qhy

qz

� �
i þ

qhx

qz
�

qhz

qx

� �
j þ

qhy

qx
�

qhx

qy

� �
k ¼ 0. (3b)

By introducing magnetic potential function j, the slight disturbed condition in Eq. (3) may satisfy

d ¼ rj, (4a)
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r2j ¼ 0. (4b)

Neglecting magnetic striction effect, for M0zðqu=qzÞ
�� ��ojmj, the equation of motion of Mindlin’s plate of the

soft ferromagnetic material may be described as

r � tþ m0M � rH ¼ r
q2u
qt2

(5)

and the physical equation

t ¼ rþ m0MH ¼ rþ wm0HH, (6a)

where r is the material density, u ¼ ðuiÞ (i ¼ 1, 2, 3) the displacement vector and t ¼ ðtijÞ (i, j ¼ 1, 2, 3) the
magneto-elastic stress tensor in which

txx ¼ sxx; tyy ¼ syy; tzz ¼ szz þ
wB2

0

m0m2r
þ 2

wB0

mr

qj
qz

,

txy ¼ tyx ¼ sxy; tzy ¼ tyz ¼ syz þ
wB0

mr

@j
@y
; txz ¼ tzx ¼ szx þ

wB0

mr

qj
qx

, ð6bÞ

where sxx; syy;szz;sxy ¼ syx;szy ¼ syz; szx ¼ sxz are the elastic stress components. The mechanical
constitutive equation is

r ¼ lIyþ 2me ¼ lIr � uþ 2mður þ ruÞ, (7)

where l ¼ ðnEÞ=ðð1þ nÞð1� 2nÞÞ and m ¼ E=ð2ð1þ nÞÞ are the Lamé constants, E; n the modulus of elasticity
of the material and Poisson ratio and r ¼ ðq=qxÞi þ ðq=qyÞj þ ðq=qzÞk the gradient operator. According to
Eqs. (6) and (7), we can get the equation of wave motion in Mindlin’s plate of soft ferromagnetic material as
follows:

r � tþ
2wB0

mr

q
qz
rj ¼ r

q2u
qt2

. (8)

For |z| ¼ h, the boundary-value condition of the magnetic stress is written as

n � t ¼
m0
2

M2n or

txx txy txz

tyx tyy tyz

tzx tzy tzz

2
64

3
75
�
quz

qx

�
quz

qy

1

8>>>><
>>>>:

9>>>>=
>>>>;
¼

m0
2

M2

�
quz

qx

�
quz

qy

1

8>>>><
>>>>:

9>>>>=
>>>>;
. (9a)

Comparing the two sides of the above equation, it can be obtained that

txz ¼ 0; tyz ¼ 0; tzz ¼
m0
2

M2.

The linearized boundary-value conditions are

szx ¼ �
wB0

mr

qj
qx
; szy ¼ �

wB0

mr

qj
qy
; szz ¼

wðw� 2Þ

mr

B2
0

2m0mr

þ B0
qj
qz

� �
. (9b)

For |z| ¼ h, at the boundary of a plate, the boundary conditions of the magnetic field can be expressed in
vectors as the following form:

ðB� BeÞ � n ¼ 0;

ðHe �HÞ � sx ¼ 0;

ðHe �HÞ � sy ¼ 0:

8><
>: (10a)
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Considering the plate in a uniform transverse magnetic field B0 ¼ B0k (B0 ¼ constant) and neglecting
magnetic field’s effects in the edges of the plate and high-order quantities, one can obtain

Be
1z � B1z ¼ 0;

ðHe
1x �H1xÞ þ ðH

e
0z �H0zÞ

quz

qx
¼ 0;

ðHe
1y �H1yÞ þ ðH

e
0z �H0zÞ

quz

qy
¼ 0:

8>>>>><
>>>>>:

(10b)

Furthermore, one may get

qje

@z
� mr

qj
@z
¼ 0;

qje

qx
�

qj
qx
¼ �

wB0

m0mr

quz

qx

qje

qy
�

qj
qy
¼ �

wB0

m0mr

quz

qy
;

;

8>>>>>>><
>>>>>>>:

(10c)

where n ¼ ð�quz=qx;�quz=qy; 1Þ, sx ¼ ð1; 0; quz=qxÞ, sy ¼ ð0; 1; quz=qyÞ are the unit normal vector, unit
shearing vectors along the x and y axes in the upper and lower surfaces of the plate, respectively, subscript 0 a
quantity before the deformation of the plate and subscript 1 a slight disturbed quantity after the deformation.

According to the Mindlin’s plate theory, the components of displacement ux, uy, uz in a rectangular
coordinate system are defined as

ux ¼ zCxðx; y; tÞ; uy ¼ zCyðx; y; tÞ; uz ¼W ðx; y; tÞ, (11)

where W is the normal displacement of the plate and Cx, Cy are the normal rotations with respect to x and y

axes, respectively. The bending and torsional moments Mxx, Myy and Mxy ¼Myx and shearing forces Qx and
Qy in unit length can be described by Cx and Cy as follows:

Mxx ¼

Z h

�h

zsxx dz ¼ D
qCx

qx
þ v

qCy

qy

� �
, (12a)

Myy ¼

Z h

�h

zsyy dz ¼ D
qCy

qy
þ v

qCx

qx

� �
, (12b)

Mxy ¼Mxx ¼

Z h

�h

zsxy dz ¼
ð1� vÞ

2
D

qCy

qx
þ

qCx

qy

� �
, (12c)

Qx ¼

Z h

�h

sxz dz ¼ 2k2mh
qW

qx
þCx

� �
, (13a)

Qy ¼

Z h

�h

syz dz ¼ 2k2mh
qW

qy
þCy

� �
, (13b)

where k2 ¼ p2/12 is a numerical factor which is used to consider the effects of uneven shearing forces in the
thick plate and D ¼ ð2Eh3

Þ=3ð1� n2Þ is the bending stiffness of the plate.
The first two equations in Eq. (12) are the results of stresses sxx, syy multiplying by z, respectively, and

integrated with respect to the thickness of the plate. Using Eqs. (9) and (11)–(13), one obtains

qMx

qx
þ

qMyx

qy
�Qx þmxx ¼

2

3
rh3 q

2Cx

qt2
, (14a)

qMxy

qx
þ

qMy

qy
�Qy þmyy ¼

2

3
rh3 q

2Cy

qt2
. (14b)
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Considering the resultant external moments Mx and My, one gets

mxx ¼ �
wB0h

mr

qjðhÞ
qx
þ

qjð�hÞ

qx

� �
þ

2wB0

mr

Z h

�h

z
q2j
qxqz

dz, (15a)

myy ¼ �
wB0h

mr

qjðhÞ
qy
þ

qjð�hÞ

qy

� �
þ

2wB0

mr

Z h

�h

z
q2j
qy@z

dz. (15b)

Eq. (12c) is integrated with respect to the thickness of the plate. Using Eqs. (9), (11) and (13), one obtains

qQx

qx
þ

qQy

qy
þ q ¼ 2rh

q2W

qt2
. (16)

Hence, the external load q acting on the surface of the plate may be described as

q ¼
wðw� 2ÞB0

mr

qjðhÞ
@z
�

qjð�hÞ

@z

� �
þ

2wB0

mr

Z h

�h

q2j
qz2

dz. (17)

3. Analytical solution of scattering of flexural waves

Substituting Eqs. (13) and (14) into Eqs. (15) and (17), we can obtain the dynamic equations in Mindlin’s
plate of magnetic action

D
q2Cx

qx2
þ
ð1� vÞ

2

q2Cx

qy2
þ
ð1þ vÞ

2

q2Cy

qxqy

" #
� C

qW

qx
þCx

� �
¼ rJ

q2Cx

qt2
�mxx, (18a)

D
q2Cy

qy2
þ
ð1� vÞ

2

q2Cy

qx2
þ
ð1þ vÞ

2

q2Cx

qxqy

" #
� C

qW

qy
þCy

� �
¼ rJ

q2Cy

qt2
�myy, (18b)

C
q2W
qx2
þ

q2W
qy2
þ

qCx

qx
þ

qCy

qy

� �
¼ 2hr

q2W
qt2
� q, (18c)

where C ¼ 2k2mh, k2 ¼ p2/12 the shearing coefficient of reduction, J ¼ 2
3
h3 the rotary inertia of the plate and

C=D ¼ k23ð1� nÞ=2h2
¼ ðp2=8Þð1� nÞ=h2.

The potential function of disturbed electromagnetic wave along z direction varies directly with the
transverse displacement function. The magnetic potential function along z direction can be written as

j ¼ a1 cosh ðk1zÞW ðjzjphÞ. (19)

For convenience, we assume that the center of the cutout is displaced at x ¼ y ¼ 0, and the radius, a. It is
subjected to a vertical uniform magnetic field whose magnetic induction density is B0. Without loss of
generality, we assume that the incident wave transmits along x direction. Then, its mathematic expression can
be defined as follows:

F
ðiÞ
1 ¼ F 0 e

iðk1x�otÞ, (20a)

F
ðiÞ
2 ¼ 0, (20b)

f ðiÞ ¼ 0, (20c)

where F0 is the amplitude of the incident wave and k1 and o the wavenumber and the angular frequency of the
incident wave, respectively.

Assume that the electromagnetic waves propagate along the positive z-axis and the electromagnetic
potential function is proportional to the transverse displacement. Wave mode is generated along z-axis in the
plate, while radiate mode is generated outside the plate. So the magnetic potential function can be described
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as follows:

jðiÞ ¼ ½a1 coshðk1zÞ þ a2 sinhðk1zÞ�W
ðiÞ ðjzjphÞ, (21a)

jðeiÞ ¼ a3 expð�k1zÞW
ðiÞ ðz4hÞ, (21b)

jðeiÞ ¼ a4 expðk1zÞW
ðiÞ ðzo� hÞ, (21c)

where ai (i ¼ 1, 2, 3) is the coefficients of the mode of electromagnetic wave and can be defined by the
boundary conditions. According to the boundary conditions, i.e. Eqs. (9) and (10), one obtains

a1 ¼
wB0

m0mrD
; a2 ¼ 0; a3 ¼ a4 ¼ �a1mr expðqhÞ sinhðqhÞ, (22)

where D ¼ mr sinhðk1hÞ þ coshðk1hÞ.
Therefore the relation between the incident electromagnetic field and incident flexural wave field in the plate

can be expressed as

jðiÞ ¼
wB0

m0mrD
coshðk1zÞW

ðiÞ. (23)

To get the analytic solution, three functions F, f, g are introduced:

Cx ¼
qF

qx
þ

qf

qy
, (24a)

Cy ¼
qF

qy
�

qf

qx
, (24b)

W ¼
1

G

D

C
r2F � 1þ

rJ

C

q2

qt2

� �
F

� �
, (24c)

mxx ¼
qg

qx
, (24d)

myy ¼
qg

qy
, (24e)

where

G ¼ 1�
2wB0

Ck1mr

a1½k1h coshðk1hÞ � 2 sinhðk1hÞ�, (25a)

gðx; yÞ ¼
2wB0

k1mr

a1½k1h coshðk1hÞ � 2 sinhðk1hÞ�W ðx; y; tÞ. (25b)

Substituting Eq. (19) into Eq. (17), one can obtain

q ¼
2w2B0

mr

a1k1 sinhðk1hÞW ðx; y; tÞ. (26)

Substituting Eq. (24) into Eq. (18), one can obtain the following expression [10]:

Dr2r2F þ
D

C

2w2B0

mr

a1k1 sinhðk1hÞ � Cð1þ GÞ � 2hr
D

C

q2

qt2
� rJ

q2

qt2

� �
r2F

þ �
2w2B0

mr

a1k1 sinhðk1hÞ þ 2hr
q2

qt2

� �
1þ

rJ

C

q2

qt2

� �
F ¼ 0, ð27aÞ
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ð1� vÞ

2
Dr2f � Cf ¼ rJ

q2f

qt2
. (27b)

Eq. (27) can be transferred into the following forms:

r2F1 þ k2
1F 1 ¼ 0, (28a)

r2F2 � k2
2F 2 ¼ 0, (28b)

r2f � k2
3f ¼ 0, (28c)

where ki (i ¼ 1, 2) should satisfy the following frequency dispersion equation:

k4
�

2ð1þ nÞw3

k2hm0m2rD
B2
0

E
k1 sinhðk1hÞ �

Cð1� GÞ

D
þ

8h2

p2ð1� nÞ
k4
0 þ

1

3
h2k4

0

� �
k2

þ �
3ð1� n2Þw3

h3m0m2rD

B2
0

E
k1 sinhðk1hÞ � k4

0

" #
1�

8h4

3p2ð1� nÞ
k4
0

� �
¼ 0 ð29aÞ

and

k2
3 ¼

2ðC � rJo2Þ

Dð1� nÞ
¼

2

1� n
p2

8

ð1� nÞ

h2
�

1

3
h2k4

0

� �
¼

p2

4

1

h2
�

2

3ð1� nÞ
k4
0h2, (29b)

where k0 ¼ ð2rho2=DÞ1=4 is the wavenumber of the incident wave in the thin plate.
Therefore, the general solution of Eq. (28) is

F ¼ F 1 þ F2 ¼
Xþ1

n¼�1

AnH ð1Þn ðk1rÞ e
iðny�otÞ þ

Xþ1
n¼�1

BnKnðk2rÞ eiðny�otÞ, (30a)

f ¼
Xþ1

n¼�1

CnKnðk3rÞ e
iðny�otÞ, (30b)

where An, Bn and Cn are the mode coefficients of the flexural waves and determined by the
boundary conditions, H ð1Þn ð�Þ the Hankel function of the first kind and Knð�Þ the modified Bessel
function.

4. Motivation of the incident wave and total flexural wave field

For the plate problem, the incident wave fields around the cutout are written by

F
ðiÞ
1 ¼ F 0 e

iðk1x�otÞ, (31a)

F
ðiÞ
2 ¼ 0, (31b)

f ðiÞ ¼ 0. (31c)

And the scattering fields of flexural waves which is motivated by the cutout in the plate are written by

F ðsÞ ¼
Xþ1

n¼�1

AnH ð1Þn ðk1rÞ e
iðny�otÞ þ

Xþ1
n¼�1

BnKnðk2rÞ e
iðny�otÞ, (32a)

f ðsÞ ¼
Xþ1

n¼�1

CnKnðk3rÞ eiðny�otÞ. (32b)
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Therefore, the total fields of flexural waves in the vicinity of the cutout should be superposed by the incident
fields and scattering fields, namely

F ¼ F ðiÞ þ F ðsÞ, (33a)

f ¼ f ðiÞ þ f ðsÞ. (33b)
5. Boundary-value condition and the definition of mode coefficients of flexural waves

In the form of generalized displacements, the boundary-value conditions are

cn ¼ c̄, (34a)

ct ¼ c̄t, (34b)

W n ¼ W̄ n, (34c)

where n and t are the normal and tangential directions of the boundary, respectively. While in the form of
generalized stresses, the boundary-value conditions are

Mn ¼ M̄n, (35a)

Mnt ¼ M̄nt, (35b)

Qn ¼ Q̄n. (35c)

For a circular hole, the boundary-value conditions in the form of generalized displacements are

cr ¼
qF

qr
þ

1

r

qf

qy
¼ c̄r, (36a)

cy ¼
1

r

qF

qy
�

qf

qr
¼ c̄y, (36b)

W r ¼
1

G

D

C
r2F � 1þ

rJ

C

q2

qt2

� �
F

� �
¼ W̄ r. (36c)

And the boundary-value conditions in the form of generalized stresses for a circular hole are

Mr ¼ D
qcr

qr
þ n

1

r

qcy

qy
þ

cr

r

� �� �
¼ M̄r ¼ 0, (37a)

Mry ¼
1

2
ð1� nÞD

1

r

qcr

qy
þ

qcy

qr
�

cy

r

� �
¼ M̄ry ¼ 0, (37b)

Qr ¼ C
qW r

qr
þ cr

� �
¼ Q̄r ¼ 0. (37c)

For convenience, we neglect the time factor e�iot. The incident field F(i) in polar coordinates can be
expressed as

F ðiÞ ¼ F0

Xþ1
n¼�1

inJnðk1rÞ einy. (38)
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From Eqs. (24) and (37a)–(37c), one can get

q2F

qr2
þ

1

r

q2f

qrqy
�

1

r2
qf

qy
þ n

1

r2
q2F

qy2
�

1

r

q2f
qrqy
þ

1

r

qF

qr
þ

1

r2
qf

qy

� �
¼ 0;

1

r

q2F

qrqy
�

1

r2
qF

qy
�

q2f
qr2
þ

1

r

q2F

qrqy
þ

1

r2
q2f

qy2
�

1

r2
qF

qy
þ

1

r

qf

qr

� �
¼ 0;

1

G

D

C

q3F
qr3
þ

1

r

q2F
qr2
�

1

r2
qF

qr
þ

1

r2
q3F

qrqy2
�

2

r3
q2F

qy2

� �
� 1�

rJ

C
o2

� �
qF

qr

� �
þ

qF

qr
þ

1

r

qf

qy
¼ 0:

8>>>>>>>>><
>>>>>>>>>:

. (39)

Substituting Eq. (33) into Eq. (39) and comparing the mode coefficients, one can get the matrix equation

L11 L12 L13

L21 L22 L23

L31 L32 L33

2
64

3
75

An

Bn

Cn

8><
>:

9>=
>; ¼

�L14

�L24

�L34

8><
>:

9>=
>;, (40)

where

L11 ¼ k2
1H
00ð1Þ

n ðk1rÞ � nn2H ð1Þn ðk1rÞ þ nk1H 0
ð1Þ
n ðk1rÞ,

L12 ¼ k2
2K
00
nðk2rÞ � nn2Knðk2rÞ þ nk2K

0
nðk2rÞ,

L13 ¼ inð1� nÞ½k3K
0
nðk3rÞ � Knðk3rÞ�,

L14 ¼ inF0½k
2
1J 00nðk1rÞ � nn2Jnðk1rÞ þ nk1J

0
nðk1rÞ�,

L21 ¼ 2in½k1H 0
ð1Þ
n ðk1rÞ �H ð1Þn ðk1rÞ�,

L22 ¼ 2in½k2K
0
nðk2rÞ � Knðk2rÞ�,

L23 ¼ k3K
0
nðk3rÞ � k2

3K
00
nðk3rÞ � n2Knðk3rÞ,

L24 ¼ 2ninþ1F0½k1J 0nðk1rÞ � Jnðk1rÞ�
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000ð1Þ

n ðk1rÞ þ k2
1H 00

ð1Þ
n ðk1rÞ � k1n

2H 0
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n ðk1rÞ þ 2n2H ð1Þn ðk1rÞ

þ
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� �
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2K 00nðk2rÞ � k2n2K 0nðk2rÞ þ 2n2Knðk2rÞ

þ
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ð
rJ

C
o2 � 1þ GÞ � 1

� �
k2K

0
nðk2rÞ,

L33 ¼
GC

D
Knðk3rÞin,
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L34 ¼ inF 0fk
3
1J 000n ðk1rÞ þ k2

1J 00nðk1rÞ � n2k1J
0
nðk1rÞ þ 2n2Jnðk1rÞ

þ
C

D

rJ

C
o2 � 1þ G

� �
� 1

� �
k1J 0nðk1rÞg.
6. Dynamical stress concentration factor

According to the definition of dynamical stress concentration factor, the dynamical stress concentration
factor around the hole in the plate can be expressed as

DMCF ¼
ReðMyÞ

M0

����
����, (41a)

DQCF ¼
ReðQyÞ

Q0

����
����, (41b)

where the dynamic bending moment and dynamic shear stress are, respectively, expressed as

My ¼ D
1

r

qcy

qy
þ

cr

r
þ n

qcr

qr

� �

¼ D
1

r

q2F

qy2
þ

1

r

qF

qr
þ n

q2F

qr2
�

1

r
ð1� nÞ

q2f

qrqy
þ ð1� nÞ

1

r2
qf

qy

� �
, ð42aÞ

Qy ¼ C
1

r

qW

qy
þ cy

� �
¼

1

G
D
1

r
r2 qF

qy
�

1

r
C þ rJ

q2

qt2

� �
qF

qy
þ C

1

r

qF

qy
�

qf

qr

� �� �
, (42b)
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Fig. 1. Bending waves propagate along x-axis and magnetic field.

Table 1

Material characteristics of the plate

Elastic modulus, E (GPa) Poisson’s ratio, v Magnetization factor, w

196 0.3 70
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Fig. 2. Dynamic moment and shearing stress vs. incident wave frequency ((a) h/a ¼ 0.5; (b) h/a ¼ 1; (c) h/a ¼ 2; and (d) h/a ¼ 5).
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where My and Qy are the hoop dynamic bending moment and hoop dynamic shearing stress at arbitrary point
around the hole. M0 and Q0 are the amplitudes of dynamic bending moment and dynamic shearing stress of
the incident waves. For the bending waves transmitting along x-axis, one has

M0 ¼ Dk2
1F0; Q0 ¼ 2k2mhk1i

1

G
k2
1

D

C
þ 1�

rJ

o2

� �� �
� 1

� �
F0. (43)

7. Numerical examples and discussions

Consider the conditions that elastic waves propagate in the positive x direction at the infinite
distance of a Mindlin’s plate with a cutout and that a magnetic field whose magnetic induction
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density is B0 is vertical to the plate’s surface as shown in Fig. 1. The material properties of the plate are listed
in Table 1.

Fig. 2 shows that for different ratios of the square of magnetic induction density to the elastic modulus
B2
0=E, the concentration factor of dynamic bending moment varies with the ratio of the incident wave

frequency o/o0 (y ¼ p/2) for certain ratios of h/a. Figs. 3–6 display that for different ratios of the incident
wave frequency o/o0, the concentration factors of dynamic bending moment and dynamic shearing stress
(y ¼ p/2) vary with the ratio of the square of magnetic induction density to the modulus of elasticity B2

0=E for
certain ratio of h/a. Fig. 7 shows that for different ratios of the half-thickness of the plate to the radius h/a, the
concentration factors of dynamic bending moment and dynamic shearing stress (y ¼ p/2) vary with the ratio
of the incident wave frequency o/o0 for certain ratios of B2

0=E. Figs. 8 and 9 display that the concentration
factors of the dynamical bending moment and the dynamic shearing stress around the hole vary with the ratio
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0

1

2

30

210

60

240

90

270

120

300

150

330

180 0

D
Q

C
F

B0 

0

0.5

30

210

60

240

90

270

120

300

150

330

180 0

D
Q

C
F

2
B0

2
/E=1.5708  10-9 /E=6.2832  10-9

h/a=0.5         =0.3  10-2 h/a=0.5         =0.3  10-2
0 0

Fig. 9. Dynamic shearing stress vs. magnetic induction density (h/a ¼ 0.5, o/o0 ¼ 0.3� 10�2).

C. Hu et al. / Journal of Sound and Vibration 312 (2008) 151–165164
of the square of magnetic induction density to the modulus of elasticity B2
0=E for certain ratios of h/a

and o/o0.
From Fig. 2 we can see that when the proportionality factors of the half-thickness of plate h/a and the

frequency of incident wave are defined, the dynamic bending moment concentration factor (y ¼ p/2) becomes
bigger as the ratio of the square of magnetic induction density to elastic modulus B2

0=E increases. Figs. 3(a),
4(a), 5(a) and 6(a) show that the concentration factors of dynamic bending moment (y ¼ p/2) become smaller
as o/o0 increases. While Figs. 3(b), 4(b), 5(b) and 6(b) show that the cases of the concentration factors of
dynamic shearing stress is just opposite.
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Fig. 7(a) shows that the dynamic bending moment concentration factor (y ¼ p/2) becomes bigger as h/a
increases. While Fig. 7(b) shows that the case of the dynamic shearing stress concentration coefficient is
just opposite. Fig. 9 shows that the dynamic shearing stress concentration factor is generally decreased as
B2
0=E increases.

8. Conclusions

In this paper, the problems of scattering of flexural waves and dynamic stress concentration in Mindlin’s
plate of magneto-elastic interaction are studied using the wave function expansion method. An analytical
solution is obtained. By calculating the concentration factors of the dynamic bending moment and dynamic
shearing stress, we can find that the magnetic induction intensity can enhance the dynamic bending moment
factors.
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