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Abstract

In this paper, based on the equation of wave motion in Mindlin’s plate of magneto-elastic interaction, the problem of
scattering of flexural waves and dynamic stress concentrations in Mindlin’s plates of ferromagnetic material with a cutout
is analyzed using the wave function expansion method. And an analytical solution and numerical examples of the problems
are given. It can be seen from the results that the magnetic induction intensity has great influences on the dynamic bending
moment concentration factors.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of elastic waveguide and dynamic stress concentration in plates with a cutout is the important
subject in the research of solid structure dynamics. The cutout in structures directly influences the carrying
capacity and the life-span of structures. Therefore, many researchers have devoted to the theoretical and
experimental researches on this problem [1-10].

As analyzing and computing dynamic stress concentration factors or dynamic stress intensity factors, the
theory of classical thin plate has been restricted in theory. Mindlin’s thick plate theory is made up for the
shortage of classical thin plate theory by considering the influences of plate’s moment of inertia and shearing
strain on the problem. The satisfactory results have been gained in engineering analysis and calculation [4].
With the wave function expansion method, Pao and Mao [5] first studied the problem of the flexural wave
scattering and dynamic stress concentrations in Mindlin’s thick plates with cutouts and gave an analytical
solution and numerical examples.

With the developments of modern engineering, the ferromagnetic material has been considered for
structural applications in superconduct nuclear power station and magnetically levitated trains. It has better
physical and mechanical prosperities. The margin stress of crack or cavity in ferromagnetic material structures
may be increased in a uniform magnetic field. It has influences on the carrying capacity and the life-span of
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structures. According to the corresponding documents, the dynamic behaviors of ferromagnetic-elastic
structures can be significantly affected by the presence of a uniform magnetic field [7].

In this paper, based on the equation of wave motion in Mindlin’s plate of magneto-elastic interaction, the
problem of scattering of flexural waves and dynamic stress concentration in a plate of ferromagnetic material
with a cutout is analyzed with wave function expansion method.

2. The equation of wave motion in Mindlin’s plate of soft ferromagnetic materials

Suppose that the thickness of the soft ferromagnetic—elastic plate is 24. The Cartesian coordinates x—y are in
the middle plane of the plate. The z direction is along the thickness direction. The plate is placed in a static
uniform magnetic field of vertical incidence, of which magnetic induction density is B.

The whole physical quantity of magnetic field is assumed to be divided into two parts. One is the basic
physical quantity condition, which is state of rigidity. The other is the slightly disturbed physical quantity
condition. Then, the total magnetic field may be described as

B= By+b, (la)
M = My+m, (1b)
H=H+d, (lc)

where B, M and H are magnetic induction intensity, intensity of magnetization and intensity of magnetic,

respectively, subscript 0 physical quantity in the permanent magnetic field, and the minuscule slightly

disturbed quantities. The physical quantities of the magnetic field under rigidity condition are given below:
For |z|>h

Bj. = By, (2a)
B
(5. =), (20)
Ho
M;. = 0. (2¢)
For |zI<h
By. = By, (2d)
B
_ B (2e)
Ho Lty
B
My =22, (2f)
Koty

where By., Hy. and M. are the partial quantities of By, Hy, M, along the z-axis, respectively, superscript e
denotes the value in outer plate, py = 47 x 1077 N/A? the permeability of vacuum and p, = 1+ y the relative
magnetic permeability.

For convenience, the magnetic field in plate is written as

0B, 0B, 0B. )
V-B=V-(yud) = ox 5 2 0, (3a)
_ (0h. Ohy\. oh, 0Oh.\ . Oh, Ohy\,
VXd—(ay—E)l-f-(aZ—ax>‘]+<a—ay)k—o. (3b)

By introducing magnetic potential function ¢, the slight disturbed condition in Eq. (3) may satisfy
d=Vo, (4a)
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Vg = 0. (4b)

Neglecting magnetic striction effect, for |M 0-(0u/ 62)‘ < |m|, the equation of motion of Mindlin’s plate of the
soft ferromagnetic material may be described as

V-t+pyuM-VH = az—u (5)
and the physical equation
t=0+ yyMH = o + y1,HH, (6a)

where p is the material density, u = (u;) (i = 1, 2, 3) the displacement vector and t = (#;) (i, j =1, 2, 3) the
magneto-elastic stress tensor in which

£ ()2+2)C Oﬁ’

Lok e Oz

1B d 1By ©
e PNy e
. Oy 1y Ox

Ixx = Oxx, tyy = Oyy, t.: =0+

byy = byx = Oxy, 1y = ly; = Oy (6b)
where 6y, 0yy,0:2,0x = Oyy, 02, = 0):,0-x = 0. are the elastic stress components. The mechanical
constitutive equation is

o =04 2ue = AIV-u+ 2u(Vv + Vu), (7)

where 1 = (VE)/((1 + v)(1 — 2v)) and u = E/(2(1 + v)) are the Lamé constants, E, v the modulus of elasticity
of the material and Poisson ratio and V = (0/0x)i + (0/0y)j + (0/0z)k the gradient operator. According to
Egs. (6) and (7), we can get the equation of wave motion in Mindlin’s plate of soft ferromagnetic material as
follows:

2yBy d o%u

v. —Vo=p—s.
t+ aZVgo pal2 (®)

r

For |z| = h, the boundary-value condition of the magnetic stress is written as

Ou. Ou.
Ixx ny Iz - & - Ox
n'tZ%M%l or bix Ly Iy _au: =%M2 _auz . (9a)
A E oy 0y
1 1

Comparing the two sides of the above equation, it can be obtained that

=0, t.=0, t.= %Mz.

The linearized boundary-value conditions are

7By 0 By 0 v—2)[ B2 d
_1Bode 1Bl ZM{_OM _<P],

zz 0
2.“0 Ky 0z

, Oy = : 9b
peo oxT 7 e dy m o0

Ozx =

For |z| = h, at the boundary of a plate, the boundary conditions of the magnetic field can be expressed in
vectors as the following form:
(B—B° - -n=0,
(H°—H)-s, =0, (10a)
(H*—H)-s, =0.
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Considering the plate in a uniform transverse magnetic field By = Bok (By = constant) and neglecting
magnetic field’s effects in the edges of the plate and high-order quantities, one can obtain
B(I)Z - BIZ = 03
Ou;

(HS, — Hi)+ (Hj, — HOZ)a 0, (10b)

, Ou.
(HS, — Hyy) + (Hg, — HO_,)a —0.

Furthermore, one may get

0p° O0p 0
oz M T
a(Pe _ a_(P _ XBO au:

Ox Ox  pop, Ox °

(10c)
0p° Op  yBo Ou.
ay oy Hotty Oy

where n = (—0u./0x, —0u./0y, 1), sy =(1,0,0u./0x), s, =(0,1,0u./0y) are the unit normal vector, unit
shearing vectors along the x and y axes in the upper and lower surfaces of the plate, respectively, subscript 0 a
quantity before the deformation of the plate and subscript 1 a slight disturbed quantity after the deformation.

According to the Mindlin’s plate theory, the components of displacement u,, u,, u. in a rectangular
coordinate system are defined as

Uy = qux(xy% t)a uy = quy(x’y9 [)a U = W(xsy’ t)a (ll)

where W is the normal displacement of the plate and ¥, ¥, are the normal rotations with respect to x and y
axes, respectively. The bending and torsional moments M., M, and M,, = M, and shearing forces Q, and
0, in unit length can be described by ¥, and ¥, as follows:

h
an/ zoxxdz=D[alPx+v%}, (12a)
i Ox oy
h '/ .
Myy:/hzayydz=D[aa—yy+vag;}, (12b)
h
(1—-v) [0¥, 0¥,
My =M = /_hZnydZ =" D 6—xy+ Tk (12¢)
h ow
0. = / oy dz = 2% ph {—+ avx], (13a)
—h ox
h
ow
0, = 1 ay.dz = 2l [5 n lpy], (13b)

where x? = 7°/12 is a numerical factor which is used to consider the effects of uneven shearing forces in the

thick plate and D = (2Eh3)/ 3(1 —v?) is the bending stiffness of the plate.
The first two equations in Eq. (12) are the results of stresses oy, oy, multiplying by z, respectively, and
integrated with respect to the thickness of the plate. Using Egs. (9) and (11)—(13), one obtains

oM, oM, 2 ',

L9 == : 14
~ 3 O, +myy 3ph 32 (14a)
M,, oM 2 2y
a—}+b—Q)+myy=—ph3a—y. (14b)

0x oy 3 or?



C. Hu et al. | Journal of Sound and Vibration 312 (2008) 151-165 155

Considering the resultant external moments M, and M,, one gets

. _ h 2
m,, — _ KBl {00t | Be(=h)| | 2xBo / 0 4. (15a)
Uy Ox Ox . %0z
1Boh [aw(h) 6(/)(—}1)] 2By "o
my, = — + + dz. (15b)
o [T oy e Jo oyez
Eq. (12¢c) is integrated with respect to the thickness of the plate. Using Egs. (9), (11) and (13), one obtains
q. (12¢) g P P g Eq
00, 00, W
ox T oy TIT W (16)

Hence, the external load ¢ acting on the surface of the plate may be described as

2z =2)By [0p(h) d¢p(—h)] . 2xBy ("¢
= - + dz.
Hy 0z 0z My —h aZZ

(17)

3. Analytical solution of scattering of flexural waves

Substituting Egs. (13) and (14) into Egs. (15) and (17), we can obtain the dynamic equations in Mindlin’s
plate of magnetic action

XV, (1—0) ¥, (1+v) P, ow 2y,
) ANy 'P - XX 18
et e T2 C(@ + ) pJ 5~ M (18a)

(1-0d%, (1+037, ow 2y,
— 4y — Y 1
ay2 2 Ox2 2 axay C ay + y ,DJ 612 my,, (8b)
W W dy, oY, ot
[a > T2 T o Gy] 2hp 72— 4. (18¢)

where C = 2ik?uh, k* = n°/12 the shearing coefficient of reduction, J = 2/13 the rotary inertia of the plate and
C/D = k*3(1 —v)/21* = (7?/8)(1 — v)/h*.

The potential function of disturbed electromagnetic wave along z direction varies directly with the
transverse displacement function. The magnetic potential function along z direction can be written as

@ = ajcosh(ki2)W  (|z|<h). (19)

For convenience, we assume that the center of the cutout is displaced at x = y = 0, and the radius, a. It is
subjected to a vertical uniform magnetic field whose magnetic induction density is B,. Without loss of
generality, we assume that the incident wave transmits along x direction. Then, its mathematic expression can
be defined as follows:

F(li) — FO ei(klx—wt), (20&)
F(Zi) —0, (20b)
£ —, (20c)

where F is the amplitude of the incident wave and k; and w the wavenumber and the angular frequency of the
incident wave, respectively.

Assume that the electromagnetic waves propagate along the positive z-axis and the electromagnetic
potential function is proportional to the transverse displacement. Wave mode is generated along z-axis in the
plate, while radiate mode is generated outside the plate. So the magnetic potential function can be described
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as follows:
o) = [a; cosh(k,z) 4+ a» sinh(k,2)] WD (|z|<h), (21a)
P = asexp(—kiZ) WD (z>h), (21b)
o) = agexplli2)WD  (z< —h), (21c)

where a; (i=1, 2, 3) is the coefficients of the mode of electromagnetic wave and can be defined by the
boundary conditions. According to the boundary conditions, i.e. Egs. (9) and (10), one obtains
1Bo .
ay = , =0, a3=as=—aip, exp(gh) sinh(gh), (22)
HO:urA
where A = y, sinh(kh) + cosh(kh).
Therefore the relation between the incident electromagnetic field and incident flexural wave field in the plate
can be expressed as

. B .
0® = 2% cosh(e,z) . 23)
:uolurA
To get the analytic solution, three functions F, f, g are introduced:
_OF of
=5 tay (242)
_OF of
, 24b
J ay ax ( )
w=L[Por_ (14278 \p (24c)
T G|C C o ’
0
My =3 (24d)
Ox
09
My = —, (24e)
Yy ay
where
2y B
G=1- 720 ay[kih cosh(k h) — 2 sinh(kh)], (25a)
Ckl:ur
g(x,y) = k al[k h cosh(kih) — 2 sinh(k h)|W(x, y, t). (25b)
1My
Substituting Eq. (19) into Eq. (17), one can obtain
24 2
= 2B k) sinh( yW(x, . 1), (26)

Substituting Eq. (24) into Eq. (18), one can obtain the following expression [10]:
D 2By . Do az} 2p

2y2 — a0
DV*V°F + [C U, arky sinh(kih) — C(1 4+ G) — 2hpC o2 o7 or?

2B 0? pJ &
+ [ " O aik; sinh(kh) + 2hp 3 2} <1 +? e F=0, (27a)
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(I-v) J» of
DVf — Cf = pJ —=. 2
=DV — Cf = pJ 55 (27b)
Eq. (27) can be transferred into the following forms:
V2F| 4+ kiF, =0, (28a)
V2Fy —k3F, =0, (28b)
V2f —I3f =0, (28¢)

where k; (i = 1, 2) should satisfy the following frequency dispersion equation:

C(l1—G) 8h?

2004+ B2 . 1
4 0 4 2742
S o Sl h _ -
k {th,uoﬂ%ﬁ Ekl sinh(k /) D +n2(l—v) k0+3h ko |k
31 -7 B . s snt
— h — l———— = 29¢
+ [ h3,uo,ufﬁ z ky sinh(k1h) — k) 320 ) k 0 (29a)
and
2(C — pJw?) 2 -y 1 1 2
2 _ _ " oty T L 472
ks = D(l—v) ~1—v|8 2 3h Ko 4 12 3(1-v) Kol (29b)
where ko = (2phaw? /D)l/ 4 is the wavenumber of the incident wave in the thin plate.
Therefore, the general solution of Eq. (28) is
+00 +oo
F=F +Fy= Y AHP (k)" "+ 3" B,K,(kyr)e™' ", (30a)
+00 '
f=Y" CuKylhesr) ™=, (30b)

where A,, B, and C, are the mode coefficients of the flexural waves and determined by the
boundary conditions, H;”(.) the Hankel function of the first kind and K,(-) the modified Bessel
function.

4. Motivation of the incident wave and total flexural wave field

For the plate problem, the incident wave fields around the cutout are written by

F(li) = Fyeitkiv—on (31a)
F(zi) =0, (31b)
F9=o0. (31c)

And the scattering fields of flexural waves which is motivated by the cutout in the plate are written by

+00 ) +o .
F& — Z Aanll)(klr) el(nb—or) + Z B, K (kr) el(nﬂ—wt), (32a)
n=—0o0 n=—o0
+00 ,

FO =3 Cukyllyr) 0=, (32b)

n=—00
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Therefore, the total fields of flexural waves in the vicinity of the cutout should be superposed by the incident
fields and scattering fields, namely

F = F(i) + F(‘V)’ (333)

f=r0+5Y. (33b)

5. Boundary-value condition and the definition of mode coefficients of flexural waves

In the form of generalized displacements, the boundary-value conditions are

v, =, (34a)
'//z = ‘ﬁp (34b)
W,=W,, (34c)

where n and ¢ are the normal and tangential directions of the boundary, respectively. While in the form of
generalized stresses, the boundary-value conditions are

M, = Mna (35a)
M, = Mnra (35b)
Q= 0, (35¢)
For a circular hole, the boundary-value conditions in the form of generalized displacements are
oF 190f -
o trae Ve o
10F of -
lﬂe—;@—a—%, (36b)
_1[D_, pJ N\ 1 _ -
W,_G[CVF <1+C6t2 F|l=W,. (36¢)
And the boundary-value conditions in the form of generalized stresses for a circular hole are
1 _
M,=D a_lﬁ,+v _6_%4_% =M,=0, (37a)
or r 00 r
_ 1 Loy, Oy Wyl o
MVU—E(I—V)D|:; 60+E_7 —Mr()—oo (37b)
ow, _
0, = C( o l//,) =0, =0. (37¢)

For convenience, we neglect the time factor e . The incident field F” in polar coordinates can be
expressed as

—+00
FO=Fo > i"Ju(kir)e™. (38)

n=—oo
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From Egs. (24) and (37a)—(37c), one can get

’F 19 19 19*°F 193 10F 19

o2 T a0 a0 V(ﬁ@‘?w+?§+ﬁ@>=0’

1°F 10F & [(10*F 10f 10F 10f

700 P30 o (7@*72@‘72@ 75)20’ Y
(N G e R SRR T A L
G|C C or or r o6

Wi TR 2 000?13 007

Substituting Eq. (33) into Eq. (39) and comparing the mode coefficients, one can get the matrix equation

Ly Ly Lz A, —Li4
Ly Ly Lxn B, y = —Ly 3, (40)
Ly Ly Las Cy —L3g

where
Ly = KEH"V(kr) — v HO(key ) + v H' D (ke ),

Ly = I K, (kar) — v’ Ky (kar) + vk K (ar),

Liz = in(1 = W[k3 K (ksr) — Ky (ksr)],

Lyy = i"FolkiJ)(k1r) — vi* T y(kyr) + viy T (ki )],
Loy = 2in[ky H' (k1r) — HO(ky )],
Ly = 2in[k: K, (kar) — K, (kar)],
Loy = k3K, (ksr) = K3 K (ksr) — n* K (ksr),

Loy = 2ni" FolkyJ,(kr) — Ju(ki7)]

Ly = I H" V() + K2 H"Veyr) — ki H'V ey r) + 20> HO (k)

C(pJ 2 /(1)
+ |:D (C w 1+ G) 1:|le” (kir),

L3y = I5K! (kar) + ko K/ (kor) — kan® K (Kor) 4 217 K ,(Kor)

C pJ ,
+ |:B(%(D2 -1+ G) - 1:|sz’1(]€2}’),

GC .
Ly = ?Kn(kﬂ‘)ma
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Lay = i"FollyJ) (kyr) + k1T (kyr) — ki ) (kar) + 2020 (k)

N [% (%wz . G) - 1]1«1.1’ )

6. Dynamical stress concentration factor

According to the definition of dynamical stress concentration factor, the dynamical stress concentration
factor around the hole in the plate can be expressed as

DMCF = ’Re(M ol (41a)
0
R
DQCF = ‘M , (41b)
Qo
where the dynamic bending moment and dynamic shear stress are, respectively, expressed as
_ (1% % oW
Mo=D (r 30 "or
13°F 10F a2 1 0*f 19f
= -t v———(1- — V)= — 42
D(r 0 v P50 T V)rza(a)’ (422)
1/4 1 oF 1 0?2\ oF 10F of
Qe—c<r 30 *”6>—G[D Vaeﬁ(““aﬂ)ae”(rae‘arﬂ’ (420)

Fi

g. 1. Bending waves propagate along x-axis and magnetic field.

Table 1
Material characteristics of the plate

Elastic modulus, E (GPa) Poisson’s ratio, v Magnetization factor, y

196 0.3 70
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0 0.005 0.01 0.015

Fig. 2. Dynamic moment and shearing stress vs. incident wave frequency ((a) i/a = 0.5; (b) h/a = 1; (c) hja = 2; and (d) h/a = 5).

(a)

1.8
1.798
1.796
1.794

1.792
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1.788
1.786
1.784

1.782

Fig. 3. Dynamic moment and shearing stress vs. magnetic induction density (#/a = 0.5).

(b)
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5 | ]
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- 1 1 7
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(@) (b)
x 107
2.032 T 1.4 -
— W 0.1x10° h/a=1 — WwF0.1x10°2 h/a=1
2.031 w/w0=0.2X10_2 p 12 + w/w0=0.2x10'2 J
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2.029 | o |
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L 2028 | |8
) Q o6 | |
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2025 | 102y ' 1
2024 . . . . . . . 0
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Fig. 4. Dynamic moment and shearing stress vs. magnetic induction density (h/a = 1).
(a) (b)
x 108
2.2805 T T T T T T T 2.5 T T T T T T T
— W 0.1x10°2 h/a=2 —— Wl =0.1x10°2 h/a=2
228 |- ww0.2x102 g who=0.2x10” (
Whwy=0.3x102 o L Wi y=0.3x10°2 e E
22795 ¢ g
s 2279 t 1s
S : S
Q 22785 | 19 41 |
278 1
05 1 h
22775 1
2277 1 1 1 1 1 1 1 0 = 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4
BZ/E x 10 BZE x 10°

Fig. 5. Dynamic moment and shearing stress vs. magnetic induction density.

where My and Qg are the hoop dynamic bending moment and hoop dynamic shearing stress at arbitrary point
around the hole. M, and Q, are the amplitudes of dynamic bending moment and dynamic shearing stress of
the incident waves. For the bending waves transmitting along x-axis, one has

1 D oJ
My = DIFy, Q= 2K2,uhk11{5 [k%z+ (1 — E)] — 1}F0. (43)
7. Numerical examples and discussions

Consider the conditions that elastic waves propagate in the positive x direction at the infinite
distance of a Mindlin’s plate with a cutout and that a magnetic field whose magnetic induction
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Fig. 6. Dynamic moment and shearing stress vs. magnetic induction density.

(a) (b)
x 100
24 : : 35 :
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22 1 1 25 -
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1.8 E 0.5 ]

17 : - 0 . .

0 0.005 0.01 0.015 0 0.005 0.01 0.015
wiw, w/w,

Fig. 7. Dynamic moment and shearing stress vs. incident frequency (B3/E = 3.5345 x 1079).

density is By is vertical to the plate’s surface as shown in Fig. 1. The material properties of the plate are listed
in Table 1.

Fig. 2 shows that for different ratios of the square of magnetic induction density to the elastic modulus
B(z) /E, the concentration factor of dynamic bending moment varies with the ratio of the incident wave
frequency w/wg (0 = w/2) for certain ratios of i/a. Figs. 3—6 display that for different ratios of the incident
wave frequency w/wg, the concentration factors of dynamic bending moment and dynamic shearing stress
(0 = =/2) vary with the ratio of the square of magnetic induction density to the modulus of elasticity B(z) /E for
certain ratio of //a. Fig. 7 shows that for different ratios of the half-thickness of the plate to the radius //a, the
concentration factors of dynamic bending moment and dynamic shearing stress (0 = n/2) vary with the ratio
of the incident wave frequency w/w, for certain ratios of B% /E. Figs. 8 and 9 display that the concentration
factors of the dynamical bending moment and the dynamic shearing stress around the hole vary with the ratio
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Fig. 8. Dynamic moment vs. magnetic induction density (A/a = 0.5, wjwo = 0.3 x 1072).
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Fig. 9. Dynamic shearing stress vs. magnetic induction density (A/a = 0.5, wjwo = 0.3 x 1072).

of the square of magnetic induction density to the modulus of elasticity B%/E for certain ratios of h/a
and w/w.

From Fig. 2 we can see that when the proportionality factors of the half-thickness of plate /#/a and the
frequency of incident wave are defined, the dynamic bending moment concentration factor (6 = x/2) becomes
bigger as the ratio of the square of magnetic induction density to elastic modulus B% /E increases. Figs. 3(a),
4(a), 5(a) and 6(a) show that the concentration factors of dynamic bending moment (0 = n/2) become smaller
as w/wg increases. While Figs. 3(b), 4(b), 5(b) and 6(b) show that the cases of the concentration factors of
dynamic shearing stress is just opposite.
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Fig. 7(a) shows that the dynamic bending moment concentration factor (0 = ©/2) becomes bigger as /i/a
increases. While Fig. 7(b) shows that the case of the dynamic shearing stress concentration coefficient is
just opposite. Fig. 9 shows that the dynamic shearing stress concentration factor is generally decreased as
B} /E increases.

8. Conclusions

In this paper, the problems of scattering of flexural waves and dynamic stress concentration in Mindlin’s
plate of magneto-elastic interaction are studied using the wave function expansion method. An analytical
solution is obtained. By calculating the concentration factors of the dynamic bending moment and dynamic
shearing stress, we can find that the magnetic induction intensity can enhance the dynamic bending moment
factors.
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